metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.28D6, D6⋊C4⋊2C2, (C22×C4)⋊5S3, (C2×C4).65D6, C6.42(C2×D4), (C2×C6).37D4, Dic3⋊C4⋊3C2, (C22×C12)⋊2C2, C6.18(C4○D4), C6.D4⋊6C2, (C2×C6).47C23, C2.18(C4○D12), (C2×C12).78C22, C3⋊4(C22.D4), C22.9(C3⋊D4), (C22×S3).9C22, C22.55(C22×S3), (C22×C6).39C22, (C2×Dic3).15C22, C2.6(C2×C3⋊D4), (C2×C3⋊D4).6C2, SmallGroup(96,136)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.28D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd5 >
Subgroups: 178 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C22.D4, Dic3⋊C4, D6⋊C4, C6.D4, C2×C3⋊D4, C22×C12, C23.28D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C22.D4, C4○D12, C2×C3⋊D4, C23.28D6
Character table of C23.28D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -√-3 | -√-3 | √-3 | -√-3 | √-3 | √-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -√-3 | √-3 | √-3 | -√-3 | -√-3 | -√-3 | √-3 | √-3 | complex lifted from C3⋊D4 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | √-3 | -√-3 | -√-3 | √-3 | √-3 | √-3 | -√-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | √-3 | √-3 | -√-3 | √-3 | -√-3 | -√-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | 2i | 0 | 0 | 2i | -2i | -2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 0 | -2i | 0 | 0 | -2i | 2i | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2i | 0 | -2i | -2i | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | -2i | 0 | 2i | 2i | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | √-3 | -√-3 | -1 | √-3 | -√-3 | 1 | 1 | -√3 | i | -√3 | √3 | i | -i | -i | √3 | complex lifted from C4○D12 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | -√-3 | √-3 | -1 | -√-3 | √-3 | 1 | 1 | √3 | i | √3 | -√3 | i | -i | -i | -√3 | complex lifted from C4○D12 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | √-3 | -√-3 | 1 | -√-3 | √-3 | 1 | -1 | i | -√3 | -i | -i | √3 | -√3 | √3 | i | complex lifted from C4○D12 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | -√-3 | √-3 | 1 | √-3 | -√-3 | 1 | -1 | i | √3 | -i | -i | -√3 | √3 | -√3 | i | complex lifted from C4○D12 |
ρ27 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | √-3 | -√-3 | -1 | √-3 | -√-3 | 1 | 1 | √3 | -i | √3 | -√3 | -i | i | i | -√3 | complex lifted from C4○D12 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | -√-3 | √-3 | 1 | √-3 | -√-3 | 1 | -1 | -i | -√3 | i | i | √3 | -√3 | √3 | -i | complex lifted from C4○D12 |
ρ29 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | √-3 | -√-3 | 1 | -√-3 | √-3 | 1 | -1 | -i | √3 | i | i | -√3 | √3 | -√3 | -i | complex lifted from C4○D12 |
ρ30 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | -√-3 | √-3 | -1 | -√-3 | √-3 | 1 | 1 | -√3 | -i | -√3 | √3 | -i | i | i | √3 | complex lifted from C4○D12 |
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(19 25)(20 26)(21 27)(22 28)(23 29)(24 30)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 25 30)(2 29 26 5)(3 4 27 28)(7 12 31 36)(8 35 32 11)(9 10 33 34)(13 24 37 48)(14 47 38 23)(15 22 39 46)(16 45 40 21)(17 20 41 44)(18 43 42 19)
G:=sub<Sym(48)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,25,30)(2,29,26,5)(3,4,27,28)(7,12,31,36)(8,35,32,11)(9,10,33,34)(13,24,37,48)(14,47,38,23)(15,22,39,46)(16,45,40,21)(17,20,41,44)(18,43,42,19)>;
G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,25)(20,26)(21,27)(22,28)(23,29)(24,30), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,25,30)(2,29,26,5)(3,4,27,28)(7,12,31,36)(8,35,32,11)(9,10,33,34)(13,24,37,48)(14,47,38,23)(15,22,39,46)(16,45,40,21)(17,20,41,44)(18,43,42,19) );
G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(19,25),(20,26),(21,27),(22,28),(23,29),(24,30)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,25,30),(2,29,26,5),(3,4,27,28),(7,12,31,36),(8,35,32,11),(9,10,33,34),(13,24,37,48),(14,47,38,23),(15,22,39,46),(16,45,40,21),(17,20,41,44),(18,43,42,19)]])
C23.28D6 is a maximal subgroup of
C22⋊C4⋊D6 C42.277D6 C24.38D6 C24.42D6 C6.2- 1+4 C6.52- 1+4 C6.62- 1+4 C42⋊12D6 C42.96D6 C42.104D6 C42⋊18D6 C42.113D6 C42.114D6 C42⋊19D6 C42.115D6 C42.116D6 C42.118D6 C6.422+ 1+4 C6.442+ 1+4 C6.482+ 1+4 C6.492+ 1+4 C6.202- 1+4 C6.222- 1+4 C6.252- 1+4 C6.592+ 1+4 C6.792- 1+4 C4⋊C4.197D6 S3×C22.D4 C6.1202+ 1+4 C4⋊C4⋊28D6 C6.852- 1+4 C24.83D6 C24⋊12D6 C6.442- 1+4 C6.1042- 1+4 C6.1452+ 1+4 C23.28D18 C62.20C23 C62.75C23 C62.56D4 C62.60D4 C62.129D4 Dic3⋊C4⋊D5 D6⋊C4⋊D5 C30.(C2×D4) C6.D4⋊D5 C23.28D30
C23.28D6 is a maximal quotient of
(C2×C42).6S3 (C2×C42)⋊3S3 C24.20D6 C24.25D6 (C2×C6).40D8 C4⋊C4.228D6 C4⋊C4.230D6 C4⋊C4.231D6 (C2×Dic3).Q8 (C2×C12).288D4 (C2×C12).289D4 (C2×C12).290D4 C4⋊C4.233D6 C4⋊C4.236D6 C24.73D6 C24.74D6 C24.76D6 C23.28D18 C62.20C23 C62.75C23 C62.56D4 C62.60D4 C62.129D4 Dic3⋊C4⋊D5 D6⋊C4⋊D5 C30.(C2×D4) C6.D4⋊D5 C23.28D30
Matrix representation of C23.28D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 11 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 |
1 | 2 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,11,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[1,12,0,0,0,0,2,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
C23.28D6 in GAP, Magma, Sage, TeX
C_2^3._{28}D_6
% in TeX
G:=Group("C2^3.28D6");
// GroupNames label
G:=SmallGroup(96,136);
// by ID
G=gap.SmallGroup(96,136);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,218,86,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^5>;
// generators/relations
Export